

General Description

Anaheim Automation's BG type is a compact single axis actuator which integrates a slide guide and precision ball screw. BG type offers compact dimensions and outperforms conventional positioning tables.

This is made possible by unique " U " shaped guide rail and slide block which provides multiple functions of a guide block and a ball screw nut combined into a single unit. The " U " shaped guide rail offers high rigidity against bending moment. This structural feature allows for integrated framework of machinery or equipment and can be cantilevered. Additionally, the slide block contains 4 ball circuits which delivers high rigidity.

Actuator Features

- Adjustment Free

The integration of the slide guide and precision ball screw eliminates complex precision adjustment and reduces installation time dramatically.

- High Rigidity
"U" shaped guide rail provides very high rigidity despite its compact configuration and can be used for cantilevered application. (refer to page 4)
- High Accuracy

BG type contains four ball circuits and four-point contact ball grooves which contribute to its high rigidity. The combination of precision ground guide rail, slide block and precision ball screw provides high positioning accuracy.

- Space Saving

In comparison to conventional positioning tables, the BG type allows for compact designs and dramatic space saving. The "U" shaped guide rail and integrated slide block and precision ball screw make this possible.

Part Number Structure

NBC Type is categorized as either high grade (H) or precision grade (P).
 Pabl Number
Prict \qquad BG2602
BG2605
BG3305

BG3310
BG3320
BG4610
BG4620 BG5520
Part Number

Bigh ${ }^{\text {P1 Precisio }}$
igh "Precis
gh|Precision| h ${ }^{-P}$ Preci

$M_{2 P}, M_{2 Y}$ and $M_{2 R}$ are the allowable static moments when 2 blocs are used in close contact. *Please contact Anaheim Automation when using BG20-P \& BG26-P grade series with short and frequent stroke. (Short stroke, BG2001: 7mm or less, BG2005: 25 mm or less, BG2602: 14 mm or less and BG2605: 25mm or less)
Short Blocks are not available for BG3320.
Figure H-4 Direction of Moment

Allowable Speed

Allowable speed of BG type is subject to the type of motor and operating conditions. The speed may also be limited by the critical speed of the ball screw. Use caution when operating at high speed or using long rails.

Table H-2 Allowable Speed

Figure H-5 Guide Rail Length and Allowable Speed

Mass
The mass of the NBC type is listed in Table H-3 and slide block mass is listed in Table H-4
Table H-3 Mass of BG type Actuator

Part Number	Rail Length (mm)	Without Top Cover				With Top Cover				Rail Length (mm)
		Long Block		Short Block		Long Block		Short Block		
		$\begin{array}{\|c\|} \hline 1 \text { Block } \\ \text { A } \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { Blocks } \\ \text { B } \end{array}$	$\begin{array}{\|c\|} \hline 1 \text { Block } \\ \mathrm{C} \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { Blocks } \\ D \end{array}$	$\begin{array}{\|c\|} \hline 1 \text { Block } \\ \text { A } \end{array}$	$\begin{gathered} 2 \text { Blocks } \\ \text { B } \end{gathered}$	$\begin{array}{\|c} 1 \text { Block } \\ \mathrm{C} \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { Blocks } \\ D \end{array}$	
BG20	100	0.45	0.52	-	-	0.50	0.61	-	-	100
	150	0.58	0.65	-	-	0.63	0.74	-	-	150
	200	0.71	0.78	-	-	0.77	0.88	-	-	200
BG26	150	0.93	1.10	-	-	1.07	1.31	-	-	150
	200	1.14	1.31	-	-	1.30	1.54	-	-	200
	250	1.36	1.53	-	-	1.53	1.78	-	-	250
	300	1.57	1.74	-	-	1.76	2.01	-	-	300
BG33	150	1.6	-	1.5	1.7	1.8	-	1.6	1.9	150
	200	2.0	-	1.8	2.0	2.1	-	2.0	2.2	200
	300	2.6	2.9	2.58	2.7	2.8	3.2	2.6	2.9	300
	400	3.2	3.6	3.1	3.3	3.5	3.9	3.3	3.5	400
	500	3.9	4.2	3.8	3.9	4.2	4.6	4.0	4.2	500
	600	4.6	4.9	4.4	4.6	4.9	5.3	4.7	4.9	600
BG46	340	6.5	7.5	6.0	6.5	7.0	8.0	6.5	7.0	340
	440	8.0	8.5	7.5	8.0	8.5	9.5	8.0	8.5	440
	540	9.0	10.0	8.5	9.5	10.0	11.0	9.5	10.0	540
	640	10.5	11.5	10.0	10.5	11.0	12.5	10.5	11.5	640
	740	12.0	13.0	11.5	12.0	12.5	14.0	12.0	13.0	740
	840	13.0	14.0	13.0	13.5	14.0	15.5	13.5	14.0	840
	940	14.5	15.5	14.0	14.5	15.5	16.5	15.0	15.5	940
	1040	16.0	17.0	15.5	16.0	17.0	18.0	16.5	17.0	1040
	1140	17.5	18.0	17.0	17.5	18.5	19.5	18.0	18.5	1140
	1240	18.5	19.5	18.5	19.0	19.5	21.0	19.0	20.0	1240
BG55	980	20	22	-	-	21	24	-	-	980
	1080	22	24	-	-	23	26	-	-	1080
	1180	23	25	-	-	25	27	-	-	1180
	1280	25	27	-	-	27	29	-	-	1280
	1380	27	29	-	-	29	31	-	-	1380

A: 1 long block B: 2 long blocks C: 1 short block D: 2 short blocks
Table H-4 Mass of Block

Part Number	Without Top Cover		With Top Cover	
	Long Block	Short Block	Long Block	Short Block
	0.07	-	0.11	-
BG26	0.17	-	0.24	-
BG33	0.3	0.15	0.4	0.2
BG46	0.9	0.5	1.2	0.7
BG55	1.7	-	2.3	-

Mass stated "with top cover" includes mass of sub table

Inertia

Inertia of the slide block and ball screw of BG type are shown in Table H-5.
Table H-5 Inertia (reference)

Part Number	Rail Length (mm)	Without Top Cover				With Top Cover				Rail Length (mm)
		Long Block		Short Block		Long Block		Short Block		
		1 Block A	2 Blocks B	1 Block C	2 Blocks D	1 Block A	2 Blocks B	1 Block C	2 Blocks D	
BG2001	100	1.34×10^{-7}	1.36×10^{-7}	-	-	1.35×10^{-7}	1.37×10^{-7}	-	-	100
	150	1.83×10^{-7}	1.85×10^{-7}	-	-	1.84×10^{-7}	1.87×10^{-7}	-	-	150
	200	2.33×10^{-7}	2.35×10^{-7}	-	-	2.34×10^{-7}	2.37×10^{-7}	-	-	200
BG2005	100	1.76×10^{-7}	2.21×10^{-7}	-	-	2.00×10^{-7}	2.69×10^{-7}	-	-	100
	150	2.26×10^{-7}	2.70×10^{-7}	-	-	2.50×10^{-7}	3.18×10^{-7}	-	-	150
	200	2.76×10^{-7}	3.20×10^{-7}	-	-	3.00×10^{-7}	3.68×10^{-7}	-	-	200
BG2602	150	6.08×10^{-7}	6.26×10^{-7}	-	-	6.16×10^{-7}	6.40×10^{-7}	-	-	150
	200	7.65×10^{-7}	7.83×10^{-7}	-	-	7.73×10^{-7}	7.97×10^{-7}	-	-	200
	250	9.22×10^{-7}	9.39×10^{-7}	-	-	9.29×10^{-7}	9.54×10^{-7}	-	-	250
	300	1.08×10^{-6}	1.10×10^{-6}	-	-	1.09×10^{-7}	1.11×10^{-6}	-	-	300
BG2605	150	6.99×10^{-7}	8.07×10^{-7}	-	-	7.44×10^{-7}	8.98×10^{-7}	-	-	150
	200	8.56×10^{-7}	9.63×10^{-7}	-	-	9.01×10^{-7}	1.05×10^{-6}	-	-	200
	250	1.01×10^{-6}	1.12×10^{-6}	-	-	1.06×10^{-7}	1.21×10^{-6}	-	-	250
	300	1.17×10^{-6}	1.28×10^{-6}	-	-	1.21×10^{-6}	1.37×10^{-6}	-	-	300
BG3305	150	1.64×10^{-6}	-	1.56×10^{-6}	1.64×10^{-6}	1.71×10^{-6}	-	1.60×10^{-6}	1.71×10^{-6}	150
	200	2.02×10^{-6}	-	1.94×10^{-6}	2.03×10^{-6}	2.09×10^{-6}	-	1.98×10^{-6}	2.10×10^{-6}	200
	300	2.79×10^{-6}	2.99×10^{-6}	2.71×10^{-6}	2.79×10^{-6}	2.86×10^{-6}	3.13×10^{-6}	2.75×10^{-6}	2.86×10^{-6}	300
	400	3.55×10^{-6}	3.75×10^{-6}	3.48×10^{-6}	3.56×10^{-6}	3.62×10^{-6}	3.89×10^{-6}	3.51×10^{-6}	3.63×10^{-6}	400
	500	4.32×10^{-6}	4.52×10^{-6}	4.24×10^{-6}	4.32×10^{-6}	4.39×10^{-6}	4.66×10^{-6}	4.28×10^{-6}	4.39×10^{-6}	500
	600	5.08×10^{-6}	5.28×10^{-6}	5.01×10^{-6}	5.09×10^{-6}	5.15×10^{-6}	5.42×10^{-6}	5.04×10^{-6}	5.16×10^{-6}	600
BG3310	150	2.19×10^{-6}	-	1.88×10^{-6}	2.21×10^{-6}	2.47×10^{-6}	-	2.02×10^{-6}	2.49×10^{-6}	150
	200	2.57×10^{-6}	-	2.27×10^{-6}	2.59×10^{-6}	2.85×10^{-6}	-	2.40×10^{-6}	2.87×10^{-6}	200
	300	3.34×10^{-6}	4.14×10^{-6}	3.03×10^{-6}	3.36×10^{-6}	3.61×10^{-6}	4.69×10^{-6}	3.17×10^{-6}	3.64×10^{-6}	300
	400	4.10×10^{-6}	4.90×10^{-6}	3.80×10^{-6}	4.12×10^{-6}	4.38×10^{-6}	5.46×10^{-6}	3.94×10^{-6}	4.40×10^{-6}	400
	500	4.87×10^{-6}	5.67×10^{-6}	4.56×10^{-6}	4.89×10^{-6}	5.15×10^{-6}	6.22×10^{-6}	4.70×10^{-6}	5.17×10^{-6}	500
	600	5.63×10^{-6}	6.43×10^{-6}	5.33×10^{-6}	5.65×10^{-6}	5.91×10^{-6}	6.99×10^{-6}	5.47×10^{-6}	5.93×10^{-6}	600
BG3320	150	5.94×10^{-6}	-	-	-	7.06×10^{-6}	-	-	-	150
	200	6.74×10^{-6}	-	-	-	7.85×10^{-6}	-	-	-	200
	300	8.33×10^{-6}	1.15×10^{-5}	-	-	9.44×10^{-6}	1.38×10^{-5}	-	-	300
	400	9.91×10^{-6}	1.31×10^{-5}	-	-	1.10×10^{-5}	1.53×10^{-5}	-	-	400
	500	1.15×10^{-5}	1.47×10^{-5}	-	-	1.26×10^{-5}	1.69×10^{-5}	-	-	500
	600	1.31×10^{-5}	1.63×10^{-5}	-	-	1.42×10^{-5}	1.85×10^{-5}	-	-	600
BG4610	340	1.79×10^{-5}	2.02×10^{-5}	1.69×10^{-5}	1.82×10^{-5}	1.87×10^{-5}	2.17×10^{-5}	1.74×10^{-5}	1.92×10^{-5}	340
	440	2.18×10^{-5}	2.41×10^{-5}	2.08×10^{-5}	2.20×10^{-5}	2.25×10^{-5}	2.56×10^{-5}	2.13×10^{-5}	2.31×10^{-5}	440
	540	2.57×10^{-5}	2.79×10^{-5}	2.46×10^{-5}	2.59×10^{-5}	2.64×10^{-5}	2.95×10^{-5}	2.52×10^{-5}	2.69×10^{-5}	540
	640	2.95×10^{-5}	3.18×10^{-5}	2.85×10^{-5}	2.98×10^{-5}	3.03×10^{-5}	3.33×10^{-5}	2.90×10^{-5}	3.08×10^{-5}	640
	740	3.34×10^{-5}	3.57×10^{-5}	3.24×10^{-5}	3.37×10^{-5}	3.42×10^{-5}	3.72×10^{-5}	3.29×10^{-5}	3.47×10^{-5}	740
	840	3.73×10^{-5}	3.96×10^{-5}	3.63×10^{-5}	3.75×10^{-5}	3.80×10^{-5}	4.11×10^{-5}	3.67×10^{-5}	3.83×10^{-5}	840
	940	4.12×10^{-5}	4.35×10^{-5}	4.02×10^{-5}	4.14×10^{-5}	4.19×10^{-5}	4.50×10^{-5}	4.06×10^{-5}	4.22×10^{-5}	940
	1040	4.50×10^{-5}	4.74×10^{-5}	4.41×10^{-5}	4.53×10^{-5}	4.58×10^{-5}	4.88×10^{-5}	4.44×10^{-5}	4.61×10^{-5}	1040
	1140	4.89×10^{-5}	5.12×10^{-5}	4.79×10^{-5}	4.92×10^{-5}	4.97×10^{-5}	5.27×10^{-5}	4.83×10^{-5}	4.99×10^{-5}	1140
	1240	5.28×10^{-5}	5.51×10^{-5}	5.18×10^{-5}	5.30×10^{-5}	5.35×10^{-5}	5.66×10^{-5}	5.22×10^{-5}	5.38×10^{-5}	1240
BG4620	340	2.47×10^{-5}	3.39×10^{-5}	2.07×10^{-5}	2.58×10^{-5}	2.78×10^{-5}	3.99×10^{-5}	2.27×10^{-5}	2.98×10^{-5}	340
	440	2.86×10^{-5}	3.77×10^{-5}	2.46×10^{-5}	2.96×10^{-5}	3.17×10^{-5}	4.38×10^{-5}	2.66×10^{-5}	3.37×10^{-5}	440
	540	3.25×10^{-5}	4.16×10^{-5}	2.84×10^{-5}	3.35×10^{-5}	3.55×10^{-5}	4.77×10^{-5}	3.05×10^{-5}	3.76×10^{-5}	540
	640	3.63×10^{-5}	4.55×10^{-5}	3.23×10^{-5}	3.74×10^{-5}	3.94×10^{-5}	5.16×10^{-5}	3.44×10^{-5}	4.14×10^{-5}	640
	740	4.03×10^{-5}	4.94×10^{-5}	3.62×10^{-5}	4.13×10^{-5}	4.33×10^{-5}	5.55×10^{-5}	3.82×10^{-5}	4.53×10^{-5}	740
	840	4.41×10^{-5}	5.34×10^{-5}	4.02×10^{-5}	4.51×10^{-5}	4.71×10^{-5}	5.93×10^{-5}	4.17×10^{-5}	4.82×10^{-5}	840
	940	4.80×10^{-5}	5.72×10^{-5}	4.41×10^{-5}	4.90×10^{-5}	5.09×10^{-5}	6.32×10^{-5}	4.56×10^{-5}	5.21×10^{-5}	940
	1040	5.19×10^{-5}	6.11×10^{-5}	4.80×10^{-5}	5.29×10^{-5}	5.48×10^{-5}	6.71×10^{-5}	4.95×10^{-5}	5.59×10^{-5}	1040
	1140	5.57×10^{-5}	6.50×10^{-5}	5.18×10^{-5}	5.68×10^{-5}	5.87×10^{-5}	7.09×10^{-5}	5.34×10^{-5}	5.98×10^{-5}	1140
	1240	5.96×10^{-5}	6.89×10^{-5}	5.57×10^{-5}	6.06×10^{-5}	6.26×10^{-5}	7.48×10^{-5}	5.72×10^{-5}	6.37×10^{-5}	1240
BG5520	980	1.46×10^{-4}	1.64×10^{-4}	-	-	1.52×10^{-4}	1.76×10^{-4}	-	-	980
	1080	1.59×10^{-4}	1.76×10^{-4}	-	-	1.65×10^{-4}	1.88×10^{-4}	-	-	1080
	1180	1.71×10^{-4}	1.88×10^{-4}	-	-	1.77×10^{-4}	2.00×10^{-4}	-	-	1180
	1280	1.83×10^{-4}	2.00×10^{-4}	-	-	1.89×10^{-4}	2.12×10^{-4}	-	-	1280
	1380	1.95×10^{-4}	2.13×10^{-4}	-	-	2.01×10^{-4}	2.25×10^{-4}	-	-	1380

Accuracy

Table H-7 shows accuracy of BG type.
Table H-7 Accuracy

Part	Rail	$\overline{\text { Po }}$ Rep	itioning eatability		itioning curacy	$\begin{array}{r} \mathrm{R} \\ \mathrm{Para} \end{array}$	unning allelism B		acklash	*Startin	ng Torque
Number	$\begin{aligned} & \text { Length } \\ & (\mathrm{mm}) \end{aligned}$	High ym	$\begin{gathered} \text { Precision } \\ 4 \mathrm{~m} \\ \hline \end{gathered}$	High	$\begin{array}{\|c\|} \hline \text { Precision } \\ 4 \mathrm{~m} \end{array}$	$\begin{array}{\|l\|} \hline \text { High } \\ \hline \end{array}$	Precision $\underline{4 m}$	High 4m	$\begin{array}{\|c\|} \hline \text { Precision } \\ 4 \mathrm{~m} \end{array}$	$\begin{aligned} & \text { High } \\ & N^{*} \times m \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Precision } \\ \mathrm{N}^{*} \mathrm{~m} \end{array}$
	100										
BG20	150	± 3	± 1	50	20	25	10	5	2	0.01	0.012
	200										
	150										
BG26	200	± 3	± 1	50	20	25	10	5	2	0.015	0.04
	250										
	150			30	15						
	200					25	10				
BG33	300	± 3	(± 3)	35	20			5	2	0.07	0.15
	400				25						
	600		-	70	$\stackrel{-}{-}$	35			-		-
	340										
	440			35	20						0.15
	540		$\begin{gathered} \pm 1 \\ (\pm 3) \end{gathered}$	40	25	35	15		2		
	640										0.17
BG46	740	± 3		50	30	40	20	5		0.10	
	840	(± 5)									
	940			80							
	1040		-		-	50	-		-		-
	1140			100							
	1240			100							
BG55	980	± 3	± 1	80	35	50	250	5	2	0.12	0.17
	1080										
	1180			100	40		30				0.20
	$\frac{1280}{1380}$		-		-		-		-		-

Above values are measured by using our selected motors.
*Above specifications are based on using Anaheim Automation's standard grease. Other grease may cause deviations.
The values in the parentheses are positioning repeatability when used with return pulley unit.

Positioning Repeatability

After setting an arbitrary position, from one end, move the drive block to this position and measure the stop position. Repeat the positioning and measurement process 7 time with respect to the setting position at the midpoint and near both ends of travel. Take the maximum difference and divide it by 2 , then indicate it with a positive and negative sign as the test result.

Figure H-7 Positioning Repeatability

Positioning Repeatability $= \pm 1 / 2$ ((maximum value of $\ell n)$-(minimum value of $\ell n)$)

Positioning Accuracy

Positioning is performed in one direction and the resulting position is set as the datum point. Take the difference between the actual travel distance and the commanded travel distance from the datum point. Continuing in the same direction (without returning to the start point) repeat this process randomly several times until nearing to by the absolute maximum difference.

Positioning Accuracy $=(\Delta$ ln $)$ max

Running Parallelism B

After fixing the guide rail onto the surface plate, placing the dial test indicator on the center of the slide block and connecting the indicator probe onto the mounting surface, run the block over the entire travel distance. Take the maximum deviation in readings as the test result.

Backlash

Using the feed screw to move the slide block a little, take the dial test indicato reading and make it the datum point. While in this position, thrust the block by a certain force in the same direction without using the feed screw. Release the thrust and read the return, then take the difference from the datum point. Repeat the same process at the
 Take the maximu differds of travel. Take the maximum difference as the
test result.
Backlash $=\Delta \ell$

Rated Life

To obtain the rated life of the BG type, calculate the rated life of the guide portion, ball screw portion and support bearing portion. Use the minimum value as the rated life of the BG type.

A. Life of Guide Portion

Use the following equation for calculating the rated life of guide portion.

1) $L_{G}=50\left[\left(\frac{f_{c}}{f_{w}}\right)\left(\frac{C}{P_{T}}\right)\right]^{3}$

L_{c} : Rated life (km)

f_{c} : Contact coefficient (refer to Table H-8)
f_{w} : applied load coefficient (refer to Table H-9)
C: Basic dynamic load rating (N)
P_{T} : Calculated load applied to one block (N)

A. 1. Calculation of P_{T}

Before calculating the rated life using the equation (1), the calculated load applied to one block $\left(P_{T}\right)$ needs to be obtained in consideration of the moment load, etc. that will be actually applied. For rapidly-accelerating or short stroke motion, $P_{\text {I }}$ needs to be calculated with acceleration taken into consideration. The calculation of this acceleration will be carried out for the mass applied to BG. Obtain the calculated load during uniform motion, acceleration, deceleration and then use the average value of the three as P_{T}
For the calculation of P_{T}, select an appropriate equation depending on the installation conditions of the guide. It is also possible to calculate P_{T} without including the effect of acceleration by using the equation " $P_{T}=P_{T C}$ (see the equations (2), (5) and (8)). In this case, however, the obtained value is a rough approximation, so a selection with sufficient margin is recommended.

Table H-8 Contact Coefficient (fc)

Number of Blocks in Close Contact on One Axis	Contact Coefficient $\left(F_{\mathrm{c}}\right)$
1	1.0
2	0.81

Table H-9 Applied Load Coefficient (fw)

Operating Conditions		Applied Load
Coefficient $\left(F_{w}\right)$		

	$E_{p}(E 2 p)$	$E_{y}(E 2 p)$	$E_{R}(E 2 r)$
$B G 20^{* *} A$	2.25×10^{-1}	1.89×10^{-1}	7.84×10^{-2}
$B^{-1} 20^{* *} B$	3.98×10^{-2}	3.34×10^{-2}	3.92×10^{-2}
$B^{-2} 26^{* *} A$	1.51×10^{-1}	1.27×10^{-1}	5.88×10^{-2}
$B G 26^{* *} B$	2.72×10^{-2}	2.28×10^{-2}	2.94×10^{-2}
BG33**A	1.26×10^{-1}	1.06×10^{-1}	4.55×10^{-2}
BG33**B	2.20×10^{-2}	1.84×10^{-2}	2.27×10^{-2}
BG33**C	2.23×10^{-1}	1.94×10^{-1}	4.55×10^{-2}
BG33**D	3.09×10^{-1}	2.59×10^{-2}	2.27×10^{-2}
BG46**A	8.39×10^{-2}	7.04×10^{-2}	3.17×10^{-2}
BG46**B	1.56×10^{-2}	1.31×10^{-2}	1.59×10^{-2}
BG46**C	1.39×10^{-1}	1.17×10^{-1}	3.17×10^{-2}
BG46**D	2.15×10^{-2}	1.81×10^{-2}	1.59×10^{-2}
BG55**A	6.80×10^{-2}	5.71×10^{-2}	2.74×10^{-2}
BG55**B	1.35×10^{-2}	1.14×10^{-2}	1.37×10^{-2}

A.1.a. P_{T} for Horizontal Move (Horizontal Mounting)

i) during uniform motion $\left(\mathrm{P}_{\mathrm{TC}}\right)$
2) $P_{T C}=(1 / n)(W)+E p\left(M_{p L}\right)+E y\left(M_{y L}\right)+E r\left(M_{r L}\right)$
ii) during acceleration $\left(\mathrm{P}_{\mathrm{T}}\right)$
3) $P_{T C}=(1 / n)(W)+E p\left(M_{p L}+m\left(\alpha_{a}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{a}\right)(X)\right)+E r\left(M_{r L}\right)$ Note that the values of $\left(M_{p}+m \cdot a_{0} \cdot Z\right)$ and $\left(M_{\nu}+m \cdot a_{a} \cdot X\right)$ will
be treated as 0 (zero) when the calculated value is negative.

Figure $\mathrm{H}-11$

In case of load coming from different
In case of load coming from dififeren
direction other than the direction shown in the drawing W(m), plea
contact Anaheim Automation.
4) $P_{T C}=(1 / n)(W)+E p\left(M_{p L}+m\left(\alpha_{d}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{d}\right)(X)\right)+E r\left(M_{r L}\right)$ Note that the values of $\left(M_{p}+m \cdot a_{d} \cdot Z\right)$ and $\left(M_{\nu}+m \cdot a_{0} \cdot X\right)$ will
be treated as 0 (zero) when
$\mathrm{P}_{\mathrm{T} \text { : }}$: Calculated load applied to a block during uniform motion (N)
$\mathrm{P}_{\mathrm{T} T}$: Calculated load applied to a block during acceleration (N)
P_{Td} : Calculated load applied to a block during deceleration (N)
n: Number of blocks
W: Applied load (N)
m. Cacelast (kg)
a_{a} : Acceleration during accelerating process ($\mathrm{m} / \mathrm{sec}^{2}$)
a_{d}. Acceleration during decelerating process ($\mathrm{m} / \mathrm{sec}^{2}$) (the negative value)
X. Distance between the center of BG and the center of the carrying mass (mm)

Y: Distance between the center of BG and the center of the carrying mass (mm)
Z: Distance between the center of BG ball screw and the center of the carrying mass (mm)
E_{p} : Moment equivalent coefficient in the pitching direction (refer to Table $\mathrm{H}-10$)
$\mathrm{E}_{\text {: }}$: Moment equivalent coefficient in the yawing direction (refer to Table $\mathrm{H}-10$)
E_{R} : Moment equivalent coefficient in the rolling direction (refer to Table $\mathrm{H}-10$)
M_{pL} : Applied moment in the pitching direction $(\mathrm{N} \cdot \mathrm{mm}) \mathrm{M}_{\mathrm{pL}}=\mathrm{W} \cdot \mathrm{Y}$
$\mathrm{M}_{\mathrm{yL}}^{\mathrm{pL}}$: Applied moment in the yawing direction $(\mathrm{N} \cdot \mathrm{mm}) \mathrm{M}_{\mathrm{yL}}^{\mathrm{pL}}=0$
$M_{r t}$: Applied moment in the rolling direction $(N \cdot m m) M_{p L}=W \cdot X$ (Refer to Fig: $\mathrm{H}-4$ for the direction
of moment.)

A.1.b. P_{T} for Horizontal Move (Wall Mounting)

i) during uniform motion $\left(\mathrm{P}_{\mathrm{TC}}\right)$

Figure $\mathrm{H}-12$
5) $P_{T C}=(1 /(1.19)(n)) W+E p\left(M_{p L}\right)+E y\left(M_{y L}\right)+E r\left(M_{r L}\right)$
ii) during acceleration $\left(\mathrm{P}_{\mathrm{Ta}}\right)$
6) $P_{T C}=(1 /(1.19)(n)) W+E p\left(M_{p L}+m\left(\alpha_{a}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{a}\right)(X)\right)+E r\left(M_{r L}\right)$

Note that the values of $\left(M_{\nu}+m \cdot a_{a} \cdot Z\right)$ and $\left(M_{\eta}+m \cdot a_{a} \cdot X\right)$ will
be treated as 0 (zero) when the calculated value is negative.
iii) during deceleration $\left(\mathrm{P}_{\mathrm{Td}}\right)$
7) $P_{T C}=(1 /(1.19)(n)) W+E p\left(M_{p L}+m\left(\alpha_{d}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{d}\right)(X)\right)+E r\left(M_{r L}\right)$

Note that the values of $\left(M_{p}+m \cdot a_{d} \cdot Z\right)$ and $\left(M_{n}+m \cdot a_{d} \cdot X\right)$ will
P_{Tc} : Calculated load applied to a block during uniform motion (N)
$P_{\text {те }}:$ Calc
$P_{\text {та }}$: Calculated load applied to a block during acceleration (N)
$\mathrm{P}_{\text {Td }}$: Calculated load applie
n : Number of blocks of BG
W: Applied load (N)
m : Carrying mass (kg)
a : Acceleration during accelerating process $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$
a_{d} : Acceleration during decelerating process ($\mathrm{m} / \mathrm{sec}^{2}$) (the negative value)
X: Distance between the center of BG and the center of the carrying mass (mm)
Y : Distance between the center of BG and the center of the carrying mass (mm)
Z: Distance between the center of BG ball screw and the center of the carrying mass (mm)
E_{p} : Moment equivalent coefficient in the pitching direction (refer to Table $\mathrm{H}-10$)
$\mathrm{E}_{\mathrm{r}}^{\mathrm{p}}$: Moment equivalent coefficient in the yawing direction (refer to Table $\mathrm{H}-10$)
E_{R} : Moment equivalent coefficient in the rolling direction (refer to Table $\mathrm{H}-10$)
M_{pL} : Applied moment in the pitching direction $(\mathrm{N} \cdot \mathrm{mm}) \mathrm{M}_{\mathrm{pL}}=W \cdot Y$
$\mathrm{M}_{\mathrm{yl}}^{\mathrm{pL}}$: Applied moment in the yawing direction $(\mathrm{N} \cdot \mathrm{mm}) \mathrm{M}_{\mathrm{yl}}^{\mathrm{o}}=0$
$M_{r l}$: Applied moment in the rolling direction ($N \cdot m m$) $M_{p L}^{y L}=W \cdot X$ (Refer to Fig: $\mathrm{H}-4$ for the direction of moment.)

A.1.c. P_{T} for Horizontal Move (Wall Mounting)

i) during uniform motion $\left(P_{T}\right)$

8) $P_{T C}=E p\left(M_{p L}\right)+E y\left(M_{y L}\right)+E r\left(M_{r L}\right)$
ii) during acceleration $\left(P_{T \mathrm{~T}}\right)$
9) $P_{T a}=E p\left(M_{\rho L}+m\left(\alpha_{a}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{a}\right)(X)\right)+E r\left(M_{r L}\right)$

iii) during deceleration $\left(P_{T d}\right)$
10) $P_{T \mathrm{a}}=E p\left(M_{p L}+m\left(\alpha_{d}\right)(Z)\right)+E y\left(M_{y L}+m\left(\alpha_{d}\right)(X)\right)+E r\left(M_{r L}\right)$

Note that the values of $\left(M_{p}+m^{*}{ }_{a}{ }^{*} Z\right)$ and $\left(M_{p^{\prime}}+m^{*} a^{*}{ }^{*} X\right)$ will
be treated as 0 (zero) when the calculated value is negative.
P_{TC} : Calculated load applied to a block during uniform motion (N)

In case of load coming from different
direction other than the direction
direction other than the direction
shown in the drawing shown in the drawing $W(m)$, pleas
contact Anaheim Automation.
$\mathrm{P}_{\mathrm{T}}^{\mathrm{TC}}$: Calculated load applied to a block during acceleration (N)
$P_{\text {Td }}^{\text {Ta }}:$ Calculated load applied to a block during deceleration (N)
n : Number of blocks of BG
W: Applied load (N)
m : Carrying mass (kg)
a_{a} : Acceleration during accelerating process $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$
a_{a} : Acceleration during decelerating process ($\mathrm{m} / \mathrm{sec}^{2}$) (the negative value)
X : Distance between the center of BG and the center of the carrying mass (mm
Y: Distance between the center of BG and the center of the carrying mass (mm)
Z. Distance bewn (mm)
E^{p}. Moment .
E. Moment equivalent coefficient in the rolling direction (refer to Table H-10)
E_{R} : Moment
M_{pL} : Applied moment in the yawing direction $\left(\mathrm{N}^{*} \mathrm{~mm}\right) \mathrm{M}_{\mathrm{pL}}=0$
$M_{y l}$: Applied moment in the rolling direction $\left(N^{*} \mathrm{~mm}\right) \mathrm{M}_{\mathrm{yL}}=\mathrm{W}^{*} X$ (Refer to Fig: H-4 for the direction

of momen

Obtain the calculated load applied to a block $\left(\mathrm{P}_{T}\right)$ by calculating the
average load of each motion using an appropriate equation among those shown above according to the application. trav
11) $P a=\sqrt[3]{\frac{1}{S 1+S 2+S 3} P_{T a}{ }^{3}(S 1)+P_{T c}{ }^{3}(S 2)+P_{T d}{ }^{3}(S 3)}$ travel
distance
during

B. Life of Ball Screw and Support Bearing

The life of ball screw and support bearing can be calculated using a common equation, as shown below. Compare the dynamic load rating of the ball screw and the support bearing and apply smaller value for calculation.
12) $L_{a}=l\left[\left(\frac{1}{f_{w}}\right)\left(\frac{C_{a} \text { or } C_{b}}{P_{a}}\right)\right]^{3}$
L_{a} : Rated Life (km)
fw: Applied load coefficient (Refer to Table H-9)
$\mathrm{C}_{\text {a }}$: Basic dynamic load rating of the ball screw (N)
$\mathrm{C}_{\text {a }}$: Basic dynamic load rating of the support bearing (N)
P : Axial load (N)
$\ell:$ Ball screw lead (mm)

B.1. Calculation of Pa

Before calculating the life using the equation (12), calculate Pa with acceleration taken into consideration. Calculate the load in each axial direction during uniform motion, acceleration and deceleration and the obtained value is used as Pa .
P_{T} : Calculated load applied to a block during uniform motion (N)
S1: Travel distance during acceleration (mm) (Refer to Figure H -14)
S2: Travel distance during uniform motion (mm) (Refer to Figure $\mathrm{H}-14$)
S3: Travel distance during deceleration (mm) (Refer to Figure $\mathrm{H}-14$)
P_{aa} : Axial load during acceleration (N): Formulas (14) and (17)
$P_{\mathrm{ac}}^{\mathrm{aa}}$: Axial load during uniform motion (N): Formulas (13) and (16)
$P_{\mathrm{ad}}^{\mathrm{ac}}$: Axial load during deceleration (N): Formulas (15) and (18)

B.1.c.

Obtain the average axial load (Pa) using an appropriate formula among those shown above depending on the application
19) $P a=\sqrt[3]{\frac{1}{S 1+S 2+S 3}|P a a|^{3}(S 1)+|P a c|^{3}(S 2)+|P a d|^{3} 3(S 3)}$
T_{T} : Calculated load applied to a block during uniform motion (N).
S1: Travel distance during acceleration (mm) (Refer to Figure H -14)
S2: Travel distance during uniform motion (mm) (Refer to Figure H-14
S3: Travel distance during deceleration (mm) (Refer to Figure H-14)
$P_{\text {aa }}$: Axial load during acceleration (N): Formulas (14) and (17)
P_{ac} : Axial load during uniform motion (N): Formulas (13) and (16
$P_{a d}^{\mathrm{ac}}$: Axial load during deceleration (N): Formulas (15) and (18)

Lubrication

- BG type contains a lithium soap based grease. (Multemp PS No.2, KYODO YUSHI) Apply similar type of operating conditions
Use the grease fitting to lubricate the slide block. For ball screw portion apply grease directly to the surface of screw shaft.
- Unless otherwise instructed, a grease fitting is located as shown in Figure H -15
The grease can be changed to a high function type by adding a special grease option at the end of the part number. Please refer to Table $\mathrm{H}-12$ for the grease type Also refer to page 20 for further details.

Grease Option	Features	Product Name
None (Standard)	-	Multemp PS No. 2 (KYODO YUSHI)
GK	Urea-Type Low Dust Generation Grease	K Grease
GU	Urea-Type Low dust generation grease; Low Sliding Resistance	KGU Grease
GL	Lithium-Type Low Dust Generation grease	KGL Grease
GF	Urea-Type Anti-Fretting Grease	KGF Grease

Figure H-15 Location of Grease Fitting one block

Operating Temperature

Resin parts are incorporated in the BG type. Please avoid using BG type above $80^{\circ} \mathrm{C}$. Please use the product at $55^{\circ} \mathrm{C}$ or lower when sensor/bellows are optioned.

Use and Handling Precautions

- Please handle as a precision component and avoid excessive vibration or shock.
- Rough handling will affect the smooth motion and reduce the precision performance and life time
- DO NOT DISASSEMBLE. The accuracy of BG type is preadjusted when assembled.
- Please allow for extra stroke length. If the guide block repeatedly collides with damper, it may cause damage.
- Depending upon the operating environment, dust and debris may contami nate BG type and disrupt the ball circulation and precision performance.

Motor Bracket Configurations \& Applicable Motors
NB provides optional motor brackets to easily install most popular mo-

Applicable Motors		Part Number		BG20	BG26	BG33	BG46	BG55
AC Servo Motor	Panasonic	MUMA5A	50W	AA	AA	B2	-	-
		MUMA01	100W					
		MUMA02	200W	-	-	A7	A2	
		MUMA04	400W			-		
		MSMA3A	30W	A3	A3	A2	C0	-
		MSMD (MSMA) 5A	50W					
		MSMD (MSMA) 01	100W					
		MSMD (MSMA) 02	200W	-	-	A7	A2	-
		MSMD (MSMA) 04	400W			-		
		MSMD (MSMA) 08	750W	-	-	-	A3	A2
	Mitsubishi Electric	HC-AQ0135	10W	A8	A8	-	-	-
		HC-AQ0235	20W					
		HC-AQ0335	30W					
		HF-KP (MP) 053	50W	A1	A1	A1	B0	-
		HF-KP (MP) 13	100W					
		HF-KP (MP) 23	200W	-	-	A6	A1	A0
		HF-KP (MP) 43	400W			-		
		HF-KP (MP) 73	750W	-	-	-	A4	A1
		HA-FF053	50W	-	-	A3	A0	-
		HA-FF13	100W					
		HA-FF23	200W	-	-	-	A3	A2
		HA-FF33	300W					
	Yaskawa Electric	SGMM-A131*	10W	A9	A9	-	-	-
		SGMM-A231*	20W					
		SGMM-A331*	30W					
		SGMAH-A3	30W	A1	A1	A1	B0	-
		SGMJV, SGMAV (SGMAS) - A5	50W					
		SGMJV, SGMAV (SGMAS) - 01	100W					
		SGMAV (SGMAS) - C2	150W					
		SGMJV, SGMAV (SGMAS) - 02	200W	-	-	A6	A1	A0
		SGMJV, SGMAV (SGMAS) - 04	400W			-		
		SGMJV, SGMAV (SGMAS) - 08	750W	-	-	-	A4	A1
	Sanyo Denki	Q1AA04003D	30W	A1	A1	A1	B0	-
		Q1AA04005D	50W					
		Q1AA04010D	100W					
		Q1AA06020D	200W	-	-	A6	A1	A0
		Q1AA06040D	400W			-		
		Q1AA07075D	750W	-	-	-	A4	A1
		Q2AA05005D	50W	.	.	A3	A0	-
		Q2AA05010D	100W					
		Q2AA07020D	200W	-	-	-	A3	A2
		Q2AA07030D	300W					
		Q2AA07040D	400W					
		Q2AA08050D	500W	-	-	-	-	A3
		Q2AA08075D	750W					
Stepper Motor	Oriental Motor	UPD534M-A	-	A5	A5	B1	-	-
		PMU33AH	-	A6	A6	-	-	-
		UPK (RK) 54, AS4	-	A5	A5	B1	-	-
		UPK (RK) 56, AS6	-	-	-	A4	D0	-
		UPK (RK) 59, AS9	-	-	-	-	-	A4
		PK26	-	-	-	A5	-	-
	Sanyo Denki	F SERIES $\square 42 \mathrm{~mm}$	-	A5	A5	B1	-	-
		F SERIES $\square 60 \mathrm{~mm}$	-	-	-	A4	D0	-
		F SERIES $\square 85 \mathrm{~mm}$	-	-	-	-	-	A4
	Techno Drive	*K-S54*	-	A5	A5	B1	-	-
		K-S(M)56	-	-	-	A4	D0	-
		K-M(G)59	-	-	-	-	-	A4

BG20
Figures inside () indicates mass of motor mount adapter plate.

Motor Bracket AO

Motor Bracket A1 (Mass: 38g)
Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A3 (Mass: 39g)

Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A5 (Mass: 26g)
Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

L010961

Motor Bracket A6 (Mass: 10g)

Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A8 (Mass: 12g)

Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A9 (Mass: 14g)

Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

All units are in (mm)

Motor Bracket AA (Mass: 46g)

Recommended Coupling: SFC-010DA2 (Miki Pulley Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

Figures inside () indicates mass of motor mount adapter plate.

Motor Bracket AO

Motor Bracket A1 (Mass: 28g)
Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A3 (Mass: 39g)

Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A5 (Mass: 26g)
Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

L010961

Motor Bracket A6 (Mass: 10g)
Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.) LAD-20C (Sakai Manufacturing Co., Ltd.) XBW-19C2 (Nabeya Bi-tech Kaisha)

2 g)

Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A9 (Mass: 14g)

Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

All units are in (mm)

Motor Bracket AA (Mass: 46g)

Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.) LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-tech Kaisha)

BG33

Figures inside () indicates mass of motor mount adapter plate.
Motor Bracket AO

Motor Bracket A1 (Mass: 66g)
LAD-25C (Sakai Manufacturing Co.., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A2 (MasS: 67g)
LAD-25C (Sakai Manufacturing Co., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A3 (Mass: 133g)
LAD-20C (Sakai Manufacturing Co., Ltd.)
XBW-19C2 (Nabeya Bi-lech Kaio

Motor Bracket A4 (Mass: 212g)
econmend coupling:SFC-010DAZ(Miki Pulley Co. Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)
*Please contact Anaheim Automation when using a Step motor (Oriental

For configurations B1 and B2, attach the motor to the motor mount adapter plate first.

Motor Bracket A5 (Mass: 125g)

Recommend Coupling:SFC-020DA2(Miki Pulley Co., Ltd.)
LAD-25C (Sakai Manufacturing Co., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A6 (Mass: 215g)
Recommend Coupling: XBW-27C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A7 (Mass: 215g)
Recommend Coupling: XBW-27C2 (Nabeya Bi-tech Kaisha)

Recommend Coupling:SFC-010DA2(Miki Pulley Co., Ltd.)
LAD-20C (Sakai Manufacturing Co., Ltd.)

Motor Bracket B2 (Mass: 167g)
LAD-25C (Sakai Manufacturing Co., Ltd.)

Motor Bracket AO

Recommended Coupling: SFC-020DA2 (Miki Pulley Co., Ltd.)
Lad-25C (Sakai Manufacturing Co., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)
XBW-25C2 (Nabeya Bi-tech Kaisha)

Motor Bracket A1 (Mass: 103g)
Recommend Coupling:SFC-030DA2(Miki Pulley Co., Ltd.)
LAD-30C (Sakai Manufacturing Co., Ltd
XBW-34C3 (Nabeya Bi-tech Kaisha)

Motor Bracket A2 (Mass: 106g)
Recommend Coupling: SFC-030DA2(Miki Pulley Co., Ltd.)
LAD-30C (Sakai Manufacturing Co., Ltd.)
XBW-34C3 (Nabeya Bi-tech Kaisha)

Motor Bracket A3 (Mass: 448g)
Recommend Coupling: (200W-400W): SFC-030DA2 (Miki Pulley Co., Ltd.
(750W): SFC-040DA2 (Miki Pulley Co.

Motor Bracket A4 (Mass: 628g)
Recommended Coupling: SFC-040DA2 (Miki Pulley Co., Ltd.)
XBW-39C2 (Nabeya Bi-tech Kaisha)

Motor Bracket B0

Recommend Coupling:SFC-020DA2(Miki Pulley Co., Ltd.)
LAD-25C (Sakai Manufacturing Co., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)

All units are in (mm)

Motor Bracket C0

Recommend Coupling: SFC-020DA2 (Miki Pulley Co., Ltd.)
LAD-25C (Sakai Manufacturing Co., Ltd.)
XBW-25C2 (Nabeya Bi-tech Kaisha)

Motor Bracket D0 (Mass: 215g)
Recommended Coupling: SFC-020DA2 (Miki Pulley Co., Ltd.)*
LAD-25C(Sakai Manufacturing Co., Ltd.)*
XBW-27C2 (Nabeya Bi-tech Kaisha)
*Please Contact Anaheim Automation when you use a Step motor (Oriental Motor Co., Ltd.)

All units are in (mm)

BG55

Figures inside () indicates mass of motor mount adapter plate.
Motor Bracket AO

All units are in (mm)
Motor Bracket A1 (Mass: 329g)
Recommend Couping: SFC-0400A2 (Miki Pulley Co., Lta.)
LAD--40C (Sain

$\left.\begin{array}{l}\text { Al units are in }(m m) \\ \text { Motor Bracket A2 (Mass: } \\ \text { 333 }\end{array}\right)$

Motor Bracket A3 (Mants are in
Recommen Coupling: SFC.-0400 A22(Miki (Puley Co., Lta.)
${ }_{\text {CBW-30 }}$

Motor Bracket A4 (Mass: 449g)

Exposed Bracket RO

The ball screw shaft end is exposed with the exposed bracket RO type
Please fabricate an original bracket in case the standard brackets are not applicable.
BG20 Exposed Bracket R0

All units are in (mm)

1. Applicable with cover and with sensors.
2. Mass is 0.04 kg less than the mass in Table $\mathrm{H}-3$ on page 4

BG26 Exposed Bracket R0

1. Applicable with cover and with sensors
2. Mass is 0.08 kg less than the mass in Table $\mathrm{H}-3$ on page 4.

BG33 Exposed Bracket R0

All units are in (mm)

1. Applicable with cover and with sensors
2. Mass is 0.1 kg less than the mass in Table $\mathrm{H}-3$ on page 4.

BG46 Exposed Bracket R0

Applicable with cover and with sensors

1. Applicable with cover and with sensors.
2. Mass is 0.3 kg less than the mass in Table $\mathrm{H}-3$ on page 4.

BG55 Exposed Bracket R0

1. Applicable with cover and with sensors
2. Mass is 0.3 kg less than the mass in Table $\mathrm{H}-3$ on page 4.

Return Pulley Unit

Return pulley units in which a motor is connected with a timing belt are available for BG type. Its return structure allows the reduction of total length (available for BG33 and BG46).

BG33 Return Pulley Unit

1. This drawing shows RA for MSMA01 (Panasonic)
2. Installation position of Pulley Unit can be selected at 90° intervals (mounting direction code).
3. Applicable with cover and with sensors.
4. Tension plate can be built in and is not exposed. (not applicable to RC)
5. Mass is added 0.2 kg to the mass in Table $\mathrm{H}-3$, page H-7.
6. Inertia is added is added $2.22 \times 10^{-6} \mathrm{~kg}^{*} \mathrm{~m}^{2}$ to the value of Table $\mathrm{H}-5$, page 5 . (motor inertia not included)
7. Part Number structure BG33XXX-XXXX/YYZ yy: Symbol of applicable motor bracket (refer to Table
R-14
z: Mounting direction code (refer to cross section A-A)

Motor Bracket	Applicable Motors	
RA	Panasonic	MINAS Series: 50~100W
RB	Yaskawa Electric	SIGMA Series: $50 \sim 100 \mathrm{~W}$
	Mitsubishi Electric	HC-MF Series: $50 \sim 100 \mathrm{~W}$
	Sanyo Denki	Q1 Series: $50 \sim 100 \mathrm{~W}$
RC	5 Phase Stepping Motor	Z: 42 Series

Please contact Anaheim Automation for other stepper motors.

BG46 Return Pulley Unit

1. This drawing shows RA for MSMA01 (Panasonic).
2. Installation position of Pulley Unit can be selected at 90 intervals (mounting direction code),
Applicable with cover and with sensors.
3. Tension plate can be built in and is not exposed. (not applicable to RC)
Mass is added 0.7 kg to the mass in Table H-3, page 4.
4. Inertia is added is added $1.24 \times 10^{-5} \mathrm{~kg}^{*} \mathrm{~m}^{2}$ to the value of Table H-5, page 5. (motor inertia not included)
Part Number structure BG46XXX-XXXX/YYZ
yy: Symbol of applicable motor bracket (refer to Table H-15)
z: Mounting direction code (refer to cross section A-A)

Motor Bracket	Applicable Motors	
RA	Panasonic	MINAS Series: 200W
RB	Yaskawa Electric	SIGMA Series: 200 W
	Mitsubishi Electric	HC-MF Series: 200 W
	Sanyo Denki	Q1 Series: 200W
RC	5 Phase Stepping Motor	Z: 60 Series

Please contact Anaheim Automation for other stepper motors.

Sensor

Photomicro sensor or proximity sensor can be attached to the BG actuator with our optional sensor-mounting rail (the same length as the guide the guide rail length). Tapped holes are machined on both sides of the guide rail, allowing attachment of sensor to either side. Standard positioning (without special instruction from customer) would be to the left of the motor mount end. Sensor option includes the items that are listed below.

BG20

S Specification (Compact Photomicro Sensor)
Without Cover

All units are in (mm)

With Cover

All units are in (mm)

Accessories
Photomicro Sensor (PM-L24, SUNX) 3 PCS
Sensor Mounting Plate 3 pcs
Sensor Rail 1 pc
Sensor Dog 1 pc
K Specification (Proximity Sensor)
Without Cover

With Cover

All units are in (mm)

Accessories
Proximity Sensor (APM-D3B1, YAMATAKE) 2 PCS
Proximity Sensor (Different Frequency Type)(APM-D3B1F, YAMATAKE) 1 pc
Sensor Rail 1 pc
Sensor Dog 1 pc
L010961

BG26

S Specification (Compact Photomicro Sensor)
Without Cover

Photomicro Sensor (PM-L24, SUNX) 3 PCS
Sensor Mounting Plate 3 pcs
Sensor Rail 1 pc
K Specification (Proximity Sensor)

All units are in (mm)
Proximity Sensor (APM-D3B1, YAMATAKE) 2 PCS
Proximity Sensor (Different Frequency Type)(APM-D3B1F, YAMATAKE) 1 pc
Sensor Rail 1 pc
Sensor Dog 1 pc
17

BG33
s Specification (Slim-Type Photomicro Sensor)
Without Cover

With Cover

All units are in (mm)

Accessories
Photomicro Sensor (EE-SX674, OMRON) 3 pcs
Connector (EE-1001, OMRON) 3 pcs
Sensor Rail 1 pc
Sensor Dog *1 pc
*2 pcs for BG33D-150

BG33
H Specification (Close Contact Cable Photomicro Sensor)
Without Cover

short block

All units are in (mm)

With Cover

Accessories
Photomicro Sensor (EE-SX674, OMRON) 3 pcs
Connector (EE-1001, OMRON) 3 pcs
Sensor Mounting Plate (only for the without cover type) 3 pcs
Sensor Rail 1 pc
Sensor Dog *1 pc
*2 pcs for BG33D-150

BG33
K Specification (Proximity Sensor)
Without Cover

With Cover

short block

All units are in (mm)

Accessories

Photomicro Sensor (APM-D3B1, YAMATAKE) 2 pcs
Proximity Sensor (Different Frequency Type) APM-D3B1F, YAMATAKE) 1 pc
Sensor Mounting Plate (only for the without cover type) 3 pcs
Sensor Rail 1 pc
Sensor Dog *1 pc
*2 pcs for BG33D-150

BG46

S Specification (Slim-Type Photomicro Sensor)
Without Cover

With Cover

sensor rail

Accessories
Photomicro Sensor (EE-SX674, OMRON) 3 pcs
Connector (EE-1001, OMRON) 3 pcs
Sensor Rail 1 pc
Sensor Dog *1 pc

BG46
H Specification (Close Contact Cable Photomicro Sensor)
Without Cover

With Cover

Accessories
Photomicro Sensor (EE-SX671, OMRON) 3 pcs
Connector (EE-1001, OMRON) 3 pcs
Sensor Rail 1 pc
Sensor Dog 1 pc

BG46
K Specification (Proximity Sensor)
Without Cover

short block

All units are in (mm)

With Cover
long block

short block

All units are in (mm)
Accessories
Proximity Sensor (APM-D3B1, YAMATAKE) 2 pcs
Proximity Sensor (Different Frequency Type)(APM-D3B1F, YAMATAKE) 1 pc
Sensor Rail 1 pc
Sensor Dog 1 pc

BG55
S Specification (Compact Photomicro Sensor)
Without Cover

With Cover

All units are in (mm)

Accessories
Proximity Sensor (APM-D3B1, YAMATAKE) 2 pcs
Proximity Sensor (Different Frequency Type)(APM-D3B1F, YAMATAKE) 1 pc
Sensor Rail 1 pc
Sensor Dog 1 pc

H Specification (Close Contact Capable Photomicro Sensor)

Accessories
Proximity Sensor (EE-SX671, OMRON) 3 pcs
Connector (EE-1001, OMRON) 3 pcs
Sensor Rail 1 pc
Sensor Dog 1 pc

K Specification (Proxim)

Accessories
Proximity Sensor (APM-D3B1, YAMATAKE) 2 pcs
Proximity Sensor (Different Frequency Type)(APM-D3B1F, YAMATAKE) 1 pc
Sensor Rail 1 pc
Sensor Rail 1 pc

PNP Sensor

For the BG type sensors can be changed to the PNP type by adding a sensor option code "PNP" at the end of the part number.
Refer to Table $\mathrm{H}-16$ for the model number of PNP type sensors.
Table H-16 Sensor Type

Sensor Code	Sensor Type	Applicable Model Type	Standard Specification	PNP Specification Model Type
S	Slim-type photomicro sensor	BG33, BG46, BG55	EE-SX674	EE-SX674P
	Compact Photomicro sensor	BG20, BG26	PM-L24	PM-L24P
H	Close Contact Capable Photomicro Sensor	BG33, BG46, BG55	EE-SX671	EE-SX671P
	Proximity Sensor	All Model Types	APM-D3B1	APM-D3E1
	Proximity Sensor (different frequency type)	All Model Types	APM-D3B1F	APM-D3E1F

Slim-type, close contact capable photomicro sensor (symbol: S, H)/ OMRON Corporation

NPN TYPE CIRCUIT DI

Please read the specifications and precautions of the manufacture's catalog.

Proximity Sensor (Symbol: K)/Yamatake Corporation

Type	NPN Type	APM-D3B1, APM-D3B1F (Different-Frequency Type)
	PNP Type	APM-D3E1, APM-D3EIF (Different-Frequency Type)
Rated Sensing Distance		$2.5 \mathrm{~mm} \pm 15 \%$
Standard Target Object		$15 \times 15 \mathrm{~mm}, 1 \mathrm{~mm}$ thick iron
Differential Travel		15\% max. of sensing distance
Rated Supply Voltage		12/24VDC
Operating Voltage Range		10.8 to 26.4 VDC (ripple voltage 10\% max.)
Current Consumption		10 mA max.
Control Output	NPN Type	NPN transistor open collector switching current: 30 mA . (Resistive load) Voltage drop: 1V max. (Switching current 30 mA) output dielectric strength: 26.4 V
	PNP Type	PNP transistor open collector switching current: 30mA max. (resistive load) Voltage drop: 1V max. (Switching current 30 mA) output dielectric strength: 26.4 V
Operation Mode		normally closed (N.C.)
Operating Frequency		120 Hz
Indicator Lamps		Lights (red) when object approaches
Operating Temperature Range		-10° to $55^{\circ} \mathrm{C}$
Operating Humidity Range		35 to $85 \% \mathrm{RH}$
Ambient Illumination (on Receiver Lens)		Fluorescent light 10001xmax.
Dielectric Strength		$1000 \mathrm{VAC}(50 / 60 \mathrm{~Hz}$) for one min. between case and electrically live metals
Insulation Resistance		$50 \mathrm{M} \Omega$ min. (by 500VDC megger)
Vibration Resistance		10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ peak-to-peak amplitude, 2 hrs in X, Y and Z directions
Voltage Withstandability		$1000 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ for one min. between all supply terminals connected together and enclosure
Insulation Resistance		$50 \mathrm{M} \Omega$, or more (with 500 V with megger)
Shock Resistance		$500 \mathrm{~m} / \mathrm{s}^{2} 3$ times in X, Y and Z directions
Protection		IP67 (IEC 529)
	Weight	Approximately 10 g

NPN TYPE
CIRCUIT DIAGRAM

PNP TYPE
CIRCUIT DIAGRAM

Bellows

BG type can be specified with a cover or bellows for dust prevention. Bellows are securely fixed for various installation methods in positioning and directions. Sensor for bellows is limited to K (proximity sensor) type only, which is pre-installed at proper positions. Please pay attention to the stroke limit of BG with bellows that is shorter than the standard stroke limit.

Position of Sensor Cable Outlet
The positions of the outlet for sensor cables can be selected as Figure $\mathrm{H}-16$ shows. Figure H -16 Position of Sensor Cable Outlet.

Part Number structure for bellows

1. J (for the first symbol
2. Specification of the position of the sensor cable outlet. Please select the motor
3. Specification of the position of the sensor rail. Please select the right or the left hand. R: on the right from the motor side. L: on the left from the motor side. *N for BG20 and 26 since the sensors are mounted on both the right and left hand.
4. JNN for without sensors.
5. Sensor type is K (proximity sensor) type only (APM-D3 series: YAMATAKE CORPORATION).

Sensor Timing Chart
The following chart shows the standard sensor arrangement.
Figure H-17 Sensor Timing Chart

Part Number	A	B
BG20	5	8
BG26	5	13
BG33	10	13
BG46	10	13
BG55	10	13

BG20A, B

1 Long Block

2 Long Block (In Close Contact)

sensor dog width10.

1. The drawings show the "JMN" configuration.
2. The numbers in the parenthesis are the dimensions when sensors are not selected Please refer to page 29 for dimensions that are not shown on the drawings.
Material of bellows: composite resin sheet (shining black)

Rail Length	L	1 Long Block			2 Long Blocks		
	Stroke Limit	Effective Stroke	MIN	Stroke Limit	Effective Stroke	MIN	
100	-	-	-	-	-	-	
150^{*}	138	58	48	29.5	32	22	
23.5							
200	188	100	90	33.5	70	60	

*The rail mounting holes at the center cannot be used for the rail length
150 with long blocks.

BG26A, B
1 Long Block

2 Long Block (In Close Contact)

view B (motor bracket A 0)
. The drawings show the "JMN" configuration
The numbers in the parenthesis are the
dimensions when sensors are not selected.
. Please refer to page 30 for dimensions that
are not shown on the drawings
4. Material of bellows: composite resin sheet (shining black)

March 2013

BG33A, B
1 Long Block

All units are in (mm)
2 Long Block (In Close Contact)

\xrightarrow{C}

B
sensor dog width15
\qquad

All units are in (mm)
cross sectionA-A The cross sections become configuration " $J * R$ " is selected
2. The numbers in the parentheses are the dimensions when sensors are not selected Please refer to page 31 for dimensions that are not shown on the drawings. drawings
4. Material of bellows: composite resin sheet (Shine black)

BG33C, D
1 Long Block

All units are in (mm)
2 Long Block (In Close Contact)

C.

sensor dog width15 ..

view B (motor bracket AO)
All units are in (mm)

1. The drawings show the "JML" configuration The cross sections become reversed when " $J * R$ " is selected.
2. The numbers in the parentheses are the dimensions when sensors are not selected.
Please refer to page 32 for dimensions that are not shown on the drawings
3. Material of bellows: composite resin sheet (shining black)

Rail Length	L L	1 Long Block			2 Long Blocks		
	Stroke Limit	Effective Stroke	MIN	Stroke Limit	Effective Stroke	MIN	
150	138	68.5	48.5	26.5	-	-	-
200	188	104.5	84.5	33.5	67	47	26.5
300	288	184.5	164.5	43.5	143	123	38.5
400	388	262.5	242.5	54.5	211	191	54.5
500	488	342.5	322.5	64.5	291	271	64.5
600	588	404.5	384.5	83.5	369	349	75.5

BG46A, B
 1 Long Block

C.

B
$\frac{0 . T .2 \text { sensor }}{\text { APM-DBB1(YAMATAKE) }} \frac{\text { sensor dog width15.'.|. }}{\text { PORG1 sensor(different frequency type) }} \quad \underset{\text { APM-D3B1(YAMATAKE) }}{\text { O.T. } 1 \text { sensor }}$
All units are in (mm) APM-D3B1F(YAMATAKE)
2 Long Block (In Close Contact)

c.

All units are in (mm)

view B (motor bracket AO)

1. The drawings show the "JML" configuration The cross sections become reversed when " $J * R$ " is selected.
2. The numbers in the parentheses are the
dimensions when sensors are not selected
3. Please refer to page 33 for dimensions that
are not shown on the drawings.
4. Material of bellows: composite resin sheet (Shine black)

BG46C, D

1. The drawings show the "JML" configuration. The cross sections become reversed when " $J * R$ " is selected.
2. The numbers in the parentheses are the dimensions when sensors are not selected.
. Please refer to page 34 for dimensions that are not shown on the drawings.
3. Material of bellows: composite resin sheet (Shine black)

BG55A, B

The drawings show the "JML" configuration. he cross sections become reversed when "J*R" is selected.
2. The numbers in the parentheses are the dimensions when sensors are not selected. Please refer to page 35 for dimensions that are not shown on the drawings.
Material of bellows: composite resin sheet (Shine black)

BG33A, B
-Without Cover-

* For some cases, a shallow counterbore of $\varnothing 4$ will be machined at the hole area with "*" to remove a hardened layer.

BG33C, D -Without Cover-

* For some cases, a shallow counterbore of $\varnothing 4$ will be machined at the hole area with
"*" to remove a hardened layer.
BG46A, B
-Without Cover-

All units are in $\frac{\text { motor }}{(m m)}$

* For some cases, a shallow counterbore of $\varnothing 5$ will be machined at the hole area with "*" to remove a hardened layer.

* For some cases, a shallow counterbore of $\varnothing 5$ will be machined at the hole area with "*" to remove a hardened layer

BG20A, B

-Without Top Cover-

-With Top Cover-

All units are in (mm)
section A-A
View B (motor bracket AO) refer to page $\mathrm{H}-18$ for other motor bracket

Dimensions						Stroke Limit	
L,	L	N_{1}	$\mathrm{M}_{1} \times \mathrm{P}_{1}$	N_{2}	$\mathrm{M}_{2} \times \mathrm{P}_{2}$	BG20A	BG20B
100	157	20	1x60	20	1x60	43	-
150	207	15	2×60	15	2×60	93	51
200	257	40		40		143	101

1

BG26A, B

-Without Top Cover-

section A-A

All units are in (mm) -
-With Top Cover-

View B (motor bracket AO) refer to page H -20 for other motor bracket

Dimensions						Stroke Limit	
L,	L_{2}	N_{1}	M, \times P,	N_{2}	M, XP	BG26C	BG26D
150	212	35	1x80	35	1x80	73	
200	262	20		20		123	61
250	312	45	2x80	45	2x80	173	111
300	362	30	3×80	30	3x80	223	161

Stroke limitit a drive distance between both ends of the dampers.

BG33A, B

-Without Top Cover-

-With Top Cover-

section A-A
All units are in (mm)

Dimensions						Stroke Limit	
L,	L_{2}	N_{1}	$\mathrm{M}_{1} \times \mathrm{P}_{1}$	N_{2}	$\mathrm{M}_{2} \mathrm{xP} \mathrm{P}_{2}$	BG33A	BG33B
150	217	25	1x100	25	1x100	60	-
200	267	50		50		110	-
300	367		2x100		2x100	210	133
400	467		3x100		3x100	310	233
500	567		4x100		4x100	410	333
600	667		5x100		5x100	510	433

Stroke limitis a drive distance between both ends of the dampers.

BG33C, D

-Without Top Cover-

All units are in (mm)
-With Top Cover-

View B (motor bracket AO) refer to page H -22 for other motor brackel

All units are in (mm)

BG46A, B

-Without Top Cover-

-With Top Cover-

View B (motor bracket AO)
All units are in (mm)

Dimensions						Stroke Limit	
L,	L	N_{1}	$\mathrm{M}_{1} \times \mathrm{P}_{1}$	N_{2}	$\mathrm{M}_{3} \times \mathrm{P}_{2}$	BG46A	BG46B
340	438.5	70	2x100	20	3x100	209	100
440	538.5		3×100		4x100	309	200
540	638.5		4x100		5x100	409	300
640	738.5		5x100		6x100	509	400
740	838.5		6x100		7x100	609	500
840	938.5		7x100		8x100	709	600
940	1038.5		8×100		9x100	809	700
1040	1138.5		9x100		10x100	909	800
1140	1238.5		10x100		11×100	1009	900
1240	1338.5		11×100		12×100	1109	1000

BG46C, D

-Without Top Cover-

View B (motor bracket AO) refer to page $\mathrm{H}-24$ for other motor bracket
-With Top Cover-
 $\frac{\text { View B (motor bracket AO) }}{\text { refer to page } \mathrm{H}-24 \text { for other motor bracket }}$

All units are in (mm)

Dimensions						Stroke Limit	
L,	L	N_{1}	$\mathrm{M}_{1} \times \mathrm{P}_{1}$	N_{2}	$\mathrm{M}_{2} \times \mathrm{P}_{2}$	BG46C	BG46D
340	438.5	70	2x100	20	3x100	245	172
440	538.5		3×100		4×100	345	272
540	638.5		4x100		5x100	445	372
640	738.5		5x100		6x100	545	472
740	838.5		6x100		7x100	645	572
840	938.5		7x100		8×100	745	672
940	1038.5		8×100		9x100	845	772
1040	1138.5		9x100		10x100	945	872
1140	1238.5		10x100		11x100	1045	972
1240	1338.5		11×100		12×100	1145	1072

BG55A, B

-Without Top Cover-

-With Top Cover-

All units are in (mm)

Dimensions						Stroke Limit	
L_{1}	L_{2}	N_{1}	$\mathrm{M}_{1} \times \mathrm{P}_{1}$	N_{2}	$\mathrm{M}_{2} \mathrm{xP} \mathrm{P}_{2}$	BG55A	BG55B
980	1089	40	6x150	90	4×200	834	711
1080	1189	15	7x150	40	5×200	934	811
1180	1289	65		90		1034	911
1280	1389	40	8x150	40	6×200	1134	1011
1380	1489	15	9x150	90		1234	1111

Stroke limit is a drive distance between both ends of the dampers.

